6 research outputs found

    Machine learning using radiomics and dosiomics for normal tissue complication probability modeling of radiation-induced xerostomia

    Get PDF
    In routine clinical practice, the risk of xerostomia is typically managed by limiting the mean radiation dose to parotid glands. This approach used to give satisfying results. In recent years, however, several studies have reported mean-dose models to fail in the recognition of xerostomia risk. This can be explained by a strong improvement of overall dose conformality in radiotherapy due to recent technological advances, and thereby a substantial reduction of the mean dose to parotid glands. This thesis investigated novel approaches to building reliable normal tissue complication probability (NTCP) models of xerostomia in this context. For the purpose of the study, a cohort of 153 head-and-neck cancer patients treated with radiotherapy at Heidelberg University Hospital was retrospectively collected. The predictive performance of the mean-dose to parotid glands was evaluated with the Lyman-Kutcher-Burman (LKB) model. In order to examine the individual predictive power of predictors describing parotid shape (radiomics), dose shape (dosiomics), and demographic characteristics, a total of 61 different features was defined and extracted from the DICOM files. These included the patient’s age and sex, parotid shape features, features related to the dose-volume histogram, the mean dose to subvolumes of parotid glands, spatial dose gradients, and three-dimensional dose moments. In the multivariate analysis, a variety of machine learning algorithms was evaluated: 1) classification methods, that discriminated patients between a high and a low risk of complication, 2) feature selection techniques, that aimed to select a number of highly informative covariates from a large set of predictors, 3) sampling methods, that reduced the class imbalance, 4) data cleaning methods, that reduced noise in the data set. The predictive performance of the models was validated internally, using nested cross-validation, and externally, using an independent patient cohort from the PARSPORT clinical trial. The LKB model showed fairly good performance on mild-to-severe (G1+) xerostomia predictions. The corresponding dose-response curve revealed that even small doses to parotid glands increase the risk of xerostomia and should be kept as low as possible. For the patients who did develop moderate-to-severe (G2+) xerostomia, the mean dose was not an informative predictor, even though the efficient sparing of parotid glands allowed to achieve low G2+ xerostomia rates. The features describing the shape of a parotid gland and the shape of a dose proved to be highly predictive of xerostomia. In particular, the parotid volume and the spatial dose gradients in the transverse plane explained xerostomia well. The results of the machine learning algorithms comparison showed that a particular choice of a classifier and a feature selection method can significantly influence predictive performance of the NTCP model. In general, support vector machines and extra-trees achieved top performance, especially for the endpoints with a large number of observations. For the endpoints with a smaller number of observations, simple logistic regression often performed on a par with the top-ranking machine learning algorithms. The external validation showed that the analyzed multivariate models did not generalize well to the PARSPORT cohort. The only features that were predictive of xerostomia both in the Heidelberg (HD) and the PARSPORT cohort were the spatial dose gradients in the right-left and the anterior-posterior directions. Substantial differences in the distribution of covariates between the two cohorts were observed, which may be one of the reasons for the weak generalizability of the HD models. The results presented in this thesis undermine the applicability of NTCP models of xerostomia based only on the mean dose to parotid glands in highly conformal radiotherapy treatments. The spatial dose gradients in the left-right and the anterior-posterior directions proved to be predictive of xerostomia both in the HD and the PARSPORT cohort. This finding is especially important as it is not limited to a single cohort but describes a general pattern present in two independent data sets. The performance of the sophisticated machine learning methods may indicate a need for larger patient cohorts in studies on NTCP models in order to fully benefit from their advantages. Last but not least, the observed covariate-shift between the HD and the PARSPORT cohort motivates, in the author’s opinion, a need for reporting information about the covariate distribution when publishing novel NTCP models

    CT radiomics and PET radiomics: ready for clinical implementation?

    Full text link
    INTRODUCTION: Today, rapid technical and clinical developments result in an increasing number of treatment options for oncological diseases. Thus, decision support systems are needed to offer the right treatment to the right patient. Imaging biomarkers hold great promise in patient-individual treatment guidance. Routinely performed for diagnosis and staging, imaging datasets are expected to hold more information than used in the clinical practice. Radiomics describes the extraction of a large number of meaningful quantitative features from medical images, such as computed tomography (CT) and positron emission tomography (PET). Due to the non-invasive nature and ability to capture 3D image-based heterogeneity, radiomic features are potential surrogate markers of the cancer phenotype. Several radiomic studies are published per day, owing to encouraging results of many radiomics-based patient outcome models. Despite this comparably large number of studies, radiomics is mainly studied in proof of principle concept. Hence, a translation of radiomics from a hot topic research field into an essential clinical decision-making tool is lacking, but of high clinical interest. EVIDENCE ACQUISITION: Herein, we present a literature review addressing the clinical evidence of CT and PET radiomics. An extensive literature review was conducted in PubMed, including papers on robustness and clinical applications. EVIDENCE SYNTHESIS: We summarize image-modality related influences on the robustness of radiomic features and provide an overview of clinical evidence reported in the literature. Today, more evidence has been provided for CT imaging, however, PET imaging offers the promise of direct imaging of biological processes and functions. We provide a summary of future research directions, which needs to be addressed in order to successfully introduce radiomics into clinical medicine. In comparison to CT, more focus should be directed towards harmonization of PET acquisition and reconstruction protocols, which is important for transferable modelling. CONCLUSIONS: Both CT and PET radiomics are promising pre-treatment and intra-treatment biomarkers for outcome prediction. Most studies are performed in retrospective setting, however their validation in prospective data collections is ongoing

    Computed tomography-based radiomics decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis

    Full text link
    BACKGROUND Radiomic features calculated from routine medical images show great potential for personalized medicine in cancer. Patients with systemic sclerosis (SSc), a rare, multi-organ autoimmune disorder, have a similarly poor prognosis due to interstitial lung disease (ILD). OBJECTIVES To explore computed tomography (CT)-based high-dimensional image analysis (radiomics) for disease characterisation, risk stratification, and relaying information on lung pathophysiology in SSc-ILD. METHODS We investigated two independent, prospectively followed SSc-ILD cohorts (Zurich, derivation cohort, n=90; Oslo, validation cohort, n=66). For every subject, we defined 1'355 robust radiomic features from standard-of-care CT images. We performed unsupervised clustering to identify and characterize imaging-based patient clusters. A clinically applicable prognostic quantitative radiomic risk score (qRISSc) for progression-free survival was derived from radiomic profiles using supervised analysis. The biological basis of qRISSc was assessed in a cross-species approach by correlation with lung proteomics, histological and gene expression data derived from mice with bleomycin-induced lung fibrosis. RESULTS Radiomic profiling identified two clinically and prognostically distinct SSc-ILD patient clusters. To evaluate the clinical applicability, we derived and externally validated a binary, quantitative radiomic risk score composed of 26 features, qRISSc, that accurately predicted progression-free survival and significantly improved upon clinical risk stratification parameters in multivariable Cox regression analyses in the pooled cohorts. A high qRISSc score, which identifies patients at risk for progression, was reverse translatable from human to experimental ILD and correlated with fibrotic pathway activation. CONCLUSIONS Radiomics-based risk stratification using routine CT images provides complementary phenotypic, clinical and prognostic information significantly impacting clinical decision-making in SSc-ILD

    Computed tomography-based radiomics decodes prognostic and molecular differences in interstitial lung disease related to systemic sclerosis.

    No full text
    BACKGROUND Radiomic features calculated from routine medical images show great potential for personalized medicine in cancer. Patients with systemic sclerosis (SSc), a rare, multi-organ autoimmune disorder, have a similarly poor prognosis due to interstitial lung disease (ILD). OBJECTIVES To explore computed tomography (CT)-based high-dimensional image analysis (radiomics) for disease characterisation, risk stratification, and relaying information on lung pathophysiology in SSc-ILD. METHODS We investigated two independent, prospectively followed SSc-ILD cohorts (Zurich, derivation cohort, n=90; Oslo, validation cohort, n=66). For every subject, we defined 1'355 robust radiomic features from standard-of-care CT images. We performed unsupervised clustering to identify and characterize imaging-based patient clusters. A clinically applicable prognostic quantitative radiomic risk score (qRISSc) for progression-free survival was derived from radiomic profiles using supervised analysis. The biological basis of qRISSc was assessed in a cross-species approach by correlation with lung proteomics, histological and gene expression data derived from mice with bleomycin-induced lung fibrosis. RESULTS Radiomic profiling identified two clinically and prognostically distinct SSc-ILD patient clusters. To evaluate the clinical applicability, we derived and externally validated a binary, quantitative radiomic risk score composed of 26 features, qRISSc, that accurately predicted progression-free survival and significantly improved upon clinical risk stratification parameters in multivariable Cox regression analyses in the pooled cohorts. A high qRISSc score, which identifies patients at risk for progression, was reverse translatable from human to experimental ILD and correlated with fibrotic pathway activation. CONCLUSIONS Radiomics-based risk stratification using routine CT images provides complementary phenotypic, clinical and prognostic information significantly impacting clinical decision-making in SSc-ILD
    corecore